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----------------------------------------------------------------------ABSTRACT--------------------------------------------------------------

Randomness studies of bit sequences, created either by a ciphering algorithm or by a pseudorandom bit  generator 
are a subject of prolonged research interest. During the recent past the 15 statistical tests of NIST turn out to be the 
most important as well as dependable tool for the same. For searching a right pseudorandom bit generator from 
among many such algorithms, large time is required to run the complete NIST statistical test   suite. In this paper 
three test modules are considered in succession to reduce the searching time. The module-1    has one program and 
is executed almost instantly. The module-2 has four programs and takes about half an hour. The module-3 has 
fifteen programs and takes about four to five hours depending on the machine configuration.   To choose the right 
pseudorandom bits generator, the algorithms rejected by the first module are not considered by the second module 
while the third module does consider only those passed by the second module.
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1. INTRODUCTION

seudorandom bit generator (PRBG) is required for  
many applications including stream ciphers in   cryptography 
and thus the understanding of their random property is very 
important. In 1938, Kendall and Smith [1] put forwarded a 
classical discussion of a group of four statistical tests, 
namely (i) Frequency Test, (ii) Serial Test, (iii) Gap and Run 
Test and (iv) Poker Test, and these were used by Pathria [2 -
4] for testing the degree of   randomness of numerical digits 
appearing in e, , e-1 or -1.  For a long time the group of 
four tests was an important tool to statisticians to study the 
random property of a number sequences. Menezes et. al. [5] 
mentioned five tests as basic statistical tests in which the 
Autocorrelation test is added over and above the four tests 
mentioned by Kendall and Smith and all these five tests used 
to consider bit sequences as an input. However, for testing 
cryptographic modules, the US-NIST declared in 1994 four 
tests as the standard statistical tests in which three are from 
Kendall and Smith and the rest is the long run test replacing 
the serial test and these four do consider also bit sequences 
as an input [5, 6]. During 2001, the US-NIST replaced the 
standard by a more comprehensive Statistical Test Suite  [7] 
considering 16 tests – subsequently the Lempel-Ziv 
Compression test [8] was deleted and the two revised 
versions are presented considering 15 tests – one in 2008
[9, 10] and another in 2010 [11].

Since nineties many researchers conceived the idea of 
battery of statistical tests [5, 10] probably starting from 

Knuth [12]. During 2007 there was a parallel initiative   
from University of Montreal to develop a package    
TestU01 to test randomness of random number generator 
[13]. A new idea of using Walsh-Hadamard transform is 
recently coined in testing randomness of bit sequence [14]. 
The focus of attention is shifting from PRBG towards   RBG 
[15] including its implementation in FPGA [16].

It may be noted that the NIST test suite for studying random 
property of bit sequences is dependable – its execution time 
for one bit sequence is tolerable, but for   one algorithm is 
sincerely irritating. In order to have time advantage in 
testing the randomness of PRBG algorithms, three test 
modules to be used in succession are considered in this 
paper. In the first module, the frequency test at the byte level 
is carried out, in the second module the four   tests proposed 
by Kendall and Smith are considered at the bit level and the 
latest NIST statistical test suite is the third module. From a 
group of PRBG algorithms, the second module considers 
those passed by the first and the third module takes those 
into account passed by the second.   

In this paper the strategy and procedures adopted for the 
three test modules are described in Sec.2.  The three
random number generators are presented in Sec.3. Sec.4 
discusses the results obtained from each test module. And 
finally the paper ends with a conclusion, drawn in Sec.5.

P
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2.   STRATEGY OF THE THREE TEST MODULES
FOR STATISTICAL TESTS

The basic strategy is to develop a test tool based on three 
statistical test modules so that one can study the randomness 
of a large number of pseudorandom number generators 
within a reasonable time less than that taken by the NIST 
tests alone. The test module-1 is a new one   which considers 
the frequency test at byte level and can be executed quickly. 
The test module-2 considers the frequency test, 2-bit serial 
test, runs test and 8-bit poker  test – all at the bit level and 
adopts the methodology adopted in FIPS 140-1 to make a 
bit sequence to pass a particular test. The test module-3 is 
the NIST Tests Suite coded indigenously [17]. The main 
purpose of the paper is to use the three test modules in 
succession and to select a good PRBG(s). For this, six 
PRBGs namely RC4, PM, BBS-1S, BBS-3S, BBS-1L and 
BBS-4L are chosen and each one generates 300 random bit 
files each of 1342400 bits long.

There are two additional purposes in respect of the test 
module-1. First, to see if one divides a long bit sequence in 
few smaller blocks and can undertake the block frequency 
test and the second is to establish a definition of failure of 
the stipulated formalism of statistical randomness for smaller 
blocks which are derived from a long bit sequence tested 
practically random.

2.1 Test Module-1

The underlying idea behind the test module-1 is to note the 
fact that each of all the 8-bit 256 ASCII characters should 
appear uniformly all across the random bit sequence with 
probability of occurrences equal to pn = 1/256. For a 
practical bit sequence, the probability of occurrences (pi)   of 
each of all the 8-bit characters can be calculated, based on 
which a testing scheme indicating a quantitative   measure of 
randomness can be developed by defining square of the 
normalized standard deviation (σ) as the  mean of the sum 
of the square of normalized probability deviation of all 
characters,  
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For a non-random byte sequence, the value of σ2 is expected 
to be large. If σ2 is less than 0.01, one can consider the byte 
sequence as practically random.

Three tests are undertaken with the test module-1 for a 
particular bit sequence. The test-1 is developed with a 
purpose to use it for experiments to choose a suitable 
algorithm. The test-2 and test-3 are undertaken to see the 
additional purposes stated above.

2.1.1 Experimental Strategy

In test-1, it is intended to ensure that all the 8-bit    
characters are present across the entire N-byte sequence 
almost in equal number. All the characters Ci are counted for 
the entire N-byte sequence and pi = Ci/N is computed for i = 
0 to 255. Subsequently σ2 are calculated following eq. (1). 

The N-byte sequence is declared as practically random if the 
passing criterion of σ2 < 0.01 is satisfied.

In test-2, it is ensured that there is uniformity of   
distribution of all the characters across the entire N-byte 
sequence. This is achieved by dividing the entire N-byte 
sequence into k equal blocks, each of which contains M (= 
N/k) bytes. For a particular jth block, one counts all the 
characters Ci in one M-byte sequence, calculates pi = Ci/M 
for i = 0 to 255 and computes σ2

j following eq. (1). Similarly
σ2

j for j = 1 to k are computed for all the k    blocks and an 
average σ2

avg is obtained. The values of k    are taken as say 
2, 4, 5, 8, 10, 16 and 20. If the passing criterion of σ2

avg < 
0.01 is satisfied for all values of k, the test-2 considers the 
N-byte sequence as practically random where all characters 
are uniformly distributed across the entire N-byte sequence.

In test-3 it is intended to derive a byte sequence of smaller 
length by dividing the long random N-byte sequence in k
blocks taking k > 20 where the byte level randomization test 
is supposed to fail in the sense that at least one character out 
of 256 characters does not occur in any one   of the k blocks. 
It is observed from experiment that the said byte-level 
randomization test fails almost for all types of PRBG bit 
sequences taken for kmax = 65 with corresponding Mmin = 
2560. Thus all N-byte sequences are successively divided by 
k with suitable values of k from 1 to 64. For all the M-byte 
sequences greater than Mmin, the interest is to compute σ2

and to plot σ2
min, σ2

max and σ2
avg in three different colors 

against the different values of byte-length (M).

2.1.2 Experimental Results

The results and observation of the three tests stated above on 
fifteen set of data files are described below. The 
representative 15 data files each with 1342400 bits are 
taken as input, out of which the first 1331200 bits are 
selected and converted to 166400 bytes.  

The test-1 has been undertaken for each 15 data files in 
succession and pi and respective σ2 are measured. It has been 
found that 10 data files are found to be random for which 
their σ2 is found to be less than 0.01. 

For the 10 files passed by test-1, the test-2 performed 
randomness test for k = 2, 4, 5 and 8 and it is found that for 
all the 10 files σ2

avg < 0.01. This indicates that the     smallest 
length of 20800 bytes may be considered as random if the 
longer file of 166400 bytes exhibits randomness.  

Test-3 considered the same 10 files with increasing values of 
k and it is found that up to k = 64, each of all the blocks of 
length M-byte ensures the occurrences of all 256 characters 
with occurrence rate at least one. The values of σ2

max, σ
2

min

and σ2
avg are computed for k = 1 to 64 with discrete intervals 

and are plotted in Fig.1.

2.1.3 A notable Observation

The bar chart for k = 1 in Fig.1, corresponds to the 
frequency test. The block frequency test data for k = 2 to 8 
satisfy the stipulated random property, but are not       shown 
in the figure. The data for k = 10 to 64 shown in Fig.1,
indicate that σ2 varies from 0.02 to 0.12 showing non-
randomness. For larger values of k beyond 64, the situation 
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would be such that, one character or sometimes more 
characters are not occurring in each of all the M-byte blocks. 
The notable observation is the fact that such   smaller blocks 
derived from practically random longer    data set, are to be 
declared as non-random – which is a difficult proposition. It 
seems that a different statistical approach is needed to be 
taken for such smaller data files   in order to evaluate their 
random property. There is a need for studies of random 
property of ciphers of smaller   lengths in view of emerging 
embedded crypto systems.

2.2 Test Module-2

The underlying idea of the test module-2 is to repeat the four 
tests of Kendall and Smith [1] considering the input data as 
sequences of bits instead of decimal numerical digits and 
imposing in it the idea of chi-square (2) distribution for 
different degrees of freedom (ν) following FIPS 140-1 [5,
6]. The idea of chi-square (2) distribution function, P(2, ν) 
given in standard literature [5] is essentially a probability 
function which estimates significance level α for given 2 

and ν. These values are tabulated in [5]. The meaning of 
these data 2, ν and α can be stated as, P(x > 2) = α < 1, if x
is a random variable having 2 distributions with ν degrees 
of freedom. Alternatively, one can also state that, if x is a 2   
distribution with ν degrees of freedom and x exceeds 2, then
100 times α samples are rejected for an experiment on 100 
samples. In this paper the first 13424 bits have been taken 
out of the 1342400 bits for one bit sequence – such 300 
random samples are taken for each algorithm. The passing 
criterion for each test on 300 samples is to   calculate x-
value and to see how many files have x-value ≤ 2-value 
given in [5] for α = 0.05 and the value ν for a particular test.  
This means that a particular test should not reject more than 
5% of the random data samples obtained from an algorithm 
supposed to be considered as random.

The four tests are frequency test, 2-bit serial test, 8-bit 
Poker test and runs test. In frequency test one has to 
ascertain if the numbers of 0s and 1s are approximately 
equal as would be for a random sequence. The purpose      of 
the 2-bit serial test is to see if the overlapping      frequencies 

of occurrences of 00, 01, 10 and 11 in a bit sequence are 
approximately the same as would be    expected for a 
random bit sequence. The 8-bit Poker        test sees if the 
non-overlapping frequencies of 28 types of 8-bit patterns 
appearing in a long bit sequence are   approximately same 
as would be for a random bit sequence.

The runs test considers the number of runs, both of zeros and
of ones, of various lengths from 1-bit to 9-bit and sees if 
these are approximately the same as would be for a random 
bit sequence. 

For each of four tests if the desired situation is not met with, 
the chi-square deviation (x-value) is computed for all tests. 
The degrees of freedom of all the four tests are 1, 2, 28 – 1 
= 255 and 2×9 – 2 = 16 respectively. The significance level 
α is already set at 0.05 and the corresponding upper value of 
2 for each of the four tests are 3.8415, 5.9915, 293.2478 
and 26.2962 respectively following the table given in [5] for 
respective degrees of freedom.

2.3 Test Module-3

The motivation of the test module-3 is to indigenously   code 
all the NIST statistical tests. It may be noted that the NIST 
module consists of 15 tests including the Frequency test, 
Serial Test and Runs test considered in the previous test 
module-2. The methodology of computing all the   NIST 
tests is reported elsewhere [17]. A new algorithm is 
presented in NIST Special Publication 800-22 [11] in which 
the 2-value coupled with the degrees of freedom is 
transformed to a P-value instead of computing the 
probability value using the 2-distribution function. Thereby 
it sets a passing criterion; P-value ≥ 0.01 (significance 
level). Using all the P-values obtained for a particular test, 
NIST also mentioned a statistical procedure to compute 
Proportion of Passing which indicates uniformity or non-

Figure 1. Bar chart for σ2 vs k and M
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uniformity of P-values. The minimum length of a bit-
sequence required for any particular test as recommended by 
NIST is given below. 

Name of the fifteen tests are mentioned where the   minimum
length for each test as recommended by NIST   are given 
within the parenthesis following the name of the test. Test 
No.1: Frequency Test (100), Test No.2: Block Frequency 
Test (9000), Test No.3: Runs Test (100), Test No.4: Longest 
Run of Ones in a Block Test (128), Test No.5: Binary 
Matrix Rank Test (38912), Test No.6: Discrete Fourier 
Transform Test (1000), Test No.7:       Non-overlapping 
Template Test (1048576), Test No.8: Overlapping Template 
Test (1000000), Test No.9: Maurer’s “Universal Statistical” 
Test (1342400), Test No.10: Linear Complexity Test 
(1000000), Test No.11: Serial Test (1000000), Test No.12:
Approximate Entropy Test (100), Test No.13: Cumulative 
Sums (Cusum) Test (100), Test No.14: Random Excursions 
Test (1000000), Test No.15: Random Excursions Variant 
Test (1000000). In test module-3 a bit length of 1342400 is 
taken for all tests except test nos. 6 and 13 for which said 
bit length is 13424. Each test considers 300 bit sequences 
randomly generated by a particular algorithm. 

In estimating the degree of randomness of an algorithm,   the 
Threshold value (Tvalue) and P-value of P-values (POP) are 
considered as two important checking parameters. These are 
explained in sub-sections 2.3.1 and 2.3.2 respectively.

2.3.1 Computation of Proportion of Passing of a particular 
test based on its P-values 

To estimate the Observed Proportion of Passing (OPOP)    
of a particular test, it is necessary to consider large number 
of samples of bit-sequences randomly generated by an 
algorithm. If m samples of bit-sequences obtained from an 
algorithm are tested by a test producing one P-value, then 
the statistical average of Tvalue would be,

                      m
Tvalue

)1(
3)1(

 
               (2)

Here significance level (α) = 0.01. The size of m should be
greater than inverse of α. If m = 300, Tvalue = 0.972766. This 
means that such a test is considered statistically successful, if 
at least 292 P-values out of the 300 P-values do pass the test. 
If any test produced n number of P-values, then to calculate 
Tvalue in equation (2), one should     consider m×n instead of 
m. With same values of α and m, the Tvalue is 0.983907 for n 
= 8 (test no. 14). Such a test is considered statistically 
successful if at least 2362 P-values out of the total 300×8 = 
2400 P-values do pass the test.   The status for Proportion of 
Passing a particular test    would be a success if OPOP is 
greater than the corresponding Tvalue.

2.3.2 Computation of distribution pattern of P-values of a 
particular test 

One can have an understanding about uniform or non-
uniform distribution of P-values of a particular test from   
the series of obtained P-values. The P-values for a particular

test are noted in 11 sub-intervals between 0 and   1 in four 
Tables, Table 3(a) through Table 3(d). For estimating χ2-
deviation of distribution of P-values, the first two P-values 
are merged in one group and the rest in 9 groups, thereby 
considering 10 groups of P-values. The χ2-deviation of 
distribution of P-values is computed as,
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where, Si is the number of P-values in a group i, and m is 
the sample size. If a particular test produces n number of   P-
values, then m = n×(sample size). Here the degrees of 
freedom ν = 9. The two parameters in the gamma function,

),( xa are taken as, a = ν/2 and x = χ2/2 and the 

corresponding POP is obtained as, 

                                ),(
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The P-values are considered as uniformly distributed if
eq.(4) provides POP ≥ 0.0001.

3. THREE ALGORITHMS: RC4, PM AND BBS

In reality there is no algorithm to produce pure random 
numbers. All the algorithms are deterministic in nature. And 
the output sequences produced by them are not statistically 
random, rather they are called pseudorandom. There are 
different types of pseudorandom generators like Linear 
congruential, Quadratic congruential, etc. A Linear 
congruential as well as a Quadratic generator along with 
RC4 is discussed in this Section.

3.1 RC4 algorithm

RC4 is a widely used stream cipher – its algorithm is very 
simple [18, 19]. Though it was invented by Ron Rivest in 
1987, it is still of interest to modern cryptographers [20 –
24] to analyze its weaknesses and to improve its 
performance. It is intended that it generates random stream 
of key bytes which are XORed with stream of text bytes 
producing stream of random cipher bytes. 

RC4 design involves an idea coined by Knuth [12] which 
states that a series of random numbers can suitably be 
generated if number elements of a reasonably large linear 
matrix are randomly shuffled for a number of times.   Ronald 
Rivest translated the concept in two stages, KSA (Key 
Scheduling Algorithm) and PRGA (Pseudo Random 
Generator Algorithm). In KSA an identity S-Box is chosen 
with indices as element values. The elements are shuffled 
256 times considering a role of the given key. In PRGA two 
elements are randomly chosen and shuffled and the   two 
together gives one byte – the infinite continuation of the 
process randomly generates stream of bytes, termed as key 
stream.
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3.2 Park and Miller (PM) algorithm 

In 1988, S. K. Park and K. W. Miller proposed a linear 
congruential algorithm [25] to choose a sequence of random 
decimal integers. In this paper the algorithm is called as PM 
algorithm. The PM algorithm involves    choice of large 
prime integer D (say 231 – 1) and another integer A close to 
D1/2 and a choice of an initial seed number (seed0). The seed 
is continuously upgraded by the remainder obtained by 
dividing (A×seed) by D. 

Problem of the PM algorithm is that once the remainder is 
zero all remainders become zero and the algorithm fails.  
The said shortcoming can be handled by choosing a suitable 
large number as MASK followed by some programming 
technique so that zero never occurs.

3.3 BBS algorithm

In 1986, L. Blum, M. Blum and M. Shub [26] proposed an 
unpredictable PRBG which is called as BBS algorithm in 
present paper. The BBS algorithm is a popular and well 
known PRBG notionally providing perhaps the highest 
security. In BBS one has to choose two large prime   
integers p and q both congruent to 3 modulo 4 and a large 
number as seed. The seed is continuously upgraded by the 
remainder obtained by dividing square of the seed by n 
where n is the product of p and q and the LSB of the 
upgraded seed is collected –the infinite continuation of the 
process generates a pseudorandom bit sequence. 

It is widely believed that there is no polynomial time   Monte
Carlo algorithm for Composite Quadratic Residues with 
small error probability [27]. The BBS generator follows the 
Composite Quadratic Residue property and    this provides 
some evidence that BBS generator has provable security. 
But it is considered as a slow algorithm as it produces only
single bit at a time. To make faster execution of the BBS 
generator it is proved that r ≤ log2log2(n) number of bits can 
be extracted at a time where n is the modulus used in the 
algorithm [27]. The generator will be faster if r ≥ 2. Now if 

one intends to extract 4 bits, that is, r = 4 then n ≥
r22 = 

216 = 65536. In this paper    two sets of p and q are 
considered for statistical tests. In first set n value is small 
with p = 131, q = 499 and the second set has large n value 
with p=42839, q=50123. With small n value and taking 1 bit 
in single iteration in BBS, BBS-1S algorithm is defined. 
Similarly taking 3 bits together one can define BBS-3S
algorithm with small n value. With large n > 65536 one can 
extract 1 bit and also   4 bits in single iteration and can 
define BBS-1L and      BBS-4L respectively as two more 
algorithms.

4. RESULTS AND DISCUSSIONS

Six pseudorandom algorithms are taken into account – those 
are RC4, PM, BBS-1S, BBS-3S, BBS-1L and      BBS-4L.
The results obtained by the three test modules are discussed 
respectively in sections 4.1, 4.2 and 4.3. 

4.1 Results of Test Module-1

Six algorithms each having 300 bit sequences are tested by
test module-1. For a particular algorithm the best and    
worst values of σ calculated by eq. (1) are shown in Table 1 
along with the Proportion of Passing obtained from the 
probability of occurrence of 8-bit value. 

Table 1: Value of σ in test module-1

Table 1 indicates that values of σ for data set BBS-1S and 
BBS-3S are very high. The other data sets are satisfactory.

4.2 Results of Test Module-2

The BBS-1S and BBS-3S are considered here with a view 
to see their results with the test module-2. The passing 
criterion for each test is set at 90% while all tests together   it
is set at 80%. The test-wise values of percentage of passing 
are presented in Table 2 for the six algorithms considered 
for study. It is seen that BBS-1S and BBS-3S exhibit poor 
performance. The passing criteria for other tests are seen to 
be satisfactory.

Table 2: Percentage of passing in test module-2

4.3 Results of Test Module-3

In test module-3 four algorithms, namely, RC4, PM,     BBS-
1L and BBS-4L each having 300 bit sequences are tested. 
For all the four algorithms, the P-value data of all the 15 
tests are presented in Tables 3(a) through 3(d). In   Tables 3 

Data set Best value
Worst 
value

Proportion 
of Passing 

RC4 0.03391956 0.04429594 100.00

PM 0.03399225 0.04461352 100.00

BBS-1S 1.273882 15.96872 0.00

BBS-3S 0.7244467 9.183318 0.00

BBS-1L 0.03419726 0.04453781 100.00

BBS-4L 0.03499842 0.04455483 100.00

Data set
Frequenc

y test
Serial 

test
Poker 

test
Runs 
test

All (4) 
tests

RC4 94.333 93.667 94.667 92.677 81.333

PM 96.000 95.667 97.333 95.000 88.000

BBS-1S 22.333 4.333 0 0 0

BBS-3S 50.333 35.000 0 0 0

BBS-1L 94.667 94.667 95.333 91.333 80.667

BBS-4L 96.667 95.667 96.333 91.667 85.333
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the P-value data for a particular test are shown being divided 
in 11 groups between 0 and 1. For each test, OPOP of all the 
300 sequences is estimated and presented in Table 4 and if
OPOP ≥ Tvalue, a particular test is considered as being 
passed. The distribution pattern of       P-values is estimated 
through POP, following the mathematical equations given in 
the NIST document [11] and the result is presented in Table 
5. The P-values are uniformly distributed if POP ≥ 0.0001. 
The OPOP and   POP are the two checking parameters 
measuring the   degree of randomness of an algorithm. The 
Tvalue differs from test to test since it depends on the number 
of P-values generated by a test program. The each of the test 
11 and 13 has two P-values, the test 14 has eight, test 15 has 
eighteen and each of the rest eleven tests has one P-value.

If P-value < 0.01, then it will be considered as unsuccessful. 
Tables 3(a) through 3(d) show the distribution of P-values
within specific 11 sub-ranges. The Proportion of Passing for 
a particular test is the ratio of   sum of the last ten columns to
the total sum of eleven columns. It is compared with the 
Tvalue mentioned in eq.(2) to see whether the data set is 
statistically random or not.

The POP, mentioned in eq.(4), is also derived from       
Table 3 for any test. Based on this POP one can conclude 
about the distribution pattern of a data set. The               POP 
≥ 0.0001 indicates that the distribution is uniform. Table 4 
depicts the OPOP, where in columns 3rd through 6th the
Y/N indicates the successful/unsuccessful in Proportion of 
Passing. The POP is depicted in Table 5, where in columns 
2nd through 5th the Y/N indicates the uniformity/non-
uniformity of distribution of P-values. From various 
observations on test results, it is also understood that P-
values are more uniformly distributed if POP is larger. 

Table 3(a): Frequency distribution of P-values of RC4

Test No. 0.00-0.01 0.01-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

1 6 24 29 33 38 26 36 32 24 25 27

2 1 27 32 31 33 32 31 26 26 25 36

3 6 24 29 31 32 25 17 35 32 38 31

4 1 36 39 30 23 29 28 30 21 34 29

5 3 27 26 33 40 32 27 25 27 31 29

6 4 19 43 29 26 28 27 35 37 25 27

7 4                                        25 28 29 28 37 27 34 32 32 24

8 4          29 30 28 28 24 37 38 29 25 28

9 2                                        23 30 24 25 43 31 29 28 33 32

10 4                                        29 26 34 29 39 21 28 24 32 34

11 5                                       60 70 62 56 49 51 65 63 62 57

12 3                                        26 38 31 30 27 26 31 31 29 28

13 7                                        54 61 61 44 57 71 55 70 58 62

14 29                              216 236 248 246 263 252 233 254 207 216

15 72                              474 543 573 558 561 530 568 503 522 496

Table 3(b): Frequency distribution of P-values of PM

Test No. 0.00-0.01 0.01-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

1 2 20 32 28 25 32 37 27 31 46 20

2 1 26 29 32 30 31 30 29 28 27 37

3 1 26 41 29 33 31 30 32 23 25 29

4 5 23 22 35 25 33 27 31 42 27 30

5 3 28 30 29 37 28 27 28 28 30 32

6 6 26 31 27 29 38 24 36 34 27 22

7 3 26 32 21 30 23 28 30 39 30 38

8 6 32 29 29 22 32 25 27 33 33 32

9 6 16 42 30 26 33 39 33 26 30 19

10 2 31 32 22 40 31 30 21 25 34 32

11 7 61 49 63 80 58 54 46 70 51 61

12 3 30 21 30 47 29 23 28 35 24 30

13 7 51 64 71 63 61 54 69 68 52 40

14 42 260 264 220 231 213 252 259 216 236 207

15 93 487 558 557 568 501 544 545 502 544 501
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5. CONCLUSION

The BBS-1S and BBS-3S have been discarded by test 
module-1 as well as by test module-2. From the results 
shown in Table 4, one can say that PM has two “N” values
for Proportion of Passing criteria, for tests 14 and 15 but 
very close to the success result, and in Table 5, it has 
uniform distribution of P-values for all the fifteen tests. In 
Table 5, for BBS-4L the distribution of P-values in test 15 
is not uniform, although in Table 4, it is a success following 
Proportion of Passing criteria. Considering the overall result, 
BBS-4L can also be treated as practically random. Both RC4 
and BBS-1L have very good result. From the observations, 
we can conclude that BBS would give better pseudorandom 
bit sequences if large modulus is used instead of a smaller 
one.

In test module-1, byte level frequency test is executed, so 
one can avoid the bit level frequency tests in test module-2

and in test module-3 to save the execution time. The serial 
test in module-3 can be executed for variable length of bit, 
while the same test in module-2 is considers only 2-bit 
values. However, as test module-2 consist runs test and 
serial test; one can also avoid the respective tests 3 and 11 
in module-3 to have efficient result.
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Table 3(c): Frequency distribution of P-values of BBS-1L

Test No. 0.00-0.01 0.01-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

1 4 21 19 27 24 33 27 37 36 32 40

2 1 25 23 29 27 34 35 30 28 36 32

3 2 20 27 30 31 31 44 28 27 28 32

4 8 16 39 25 28 26 33 40 26 28 31

5 2 25 37 30 25 31 21 33 23 36 37

6 1 23 38 28 27 35 18 36 37 32 25

7 2 29 34 31 28 27 33 26 27 29 34

8 4 28 24 28 39 22 36 24 34 30 31

9 6 32 34 27 35 27 23 23 26 35 32

10 1 33 29 24 27 29 33 28 32 36 28

11 4 25 53 64 58 66 47 73 69 60 81

12 2 12 24 32 31 29 21 36 38 37 38

13 12 54 77 56 51 65 73 59 53 45 55

14 34 245 241 242 227 215 262 251 220 236 227

15 65 427 492 485 555 573 569 546 568 566 554

Table 3(d): Frequency distribution of P-values of BBS-4L

Test No. 0.00-0.01 0.01-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

1 5 17 33 33 30 33 41 24 29 21 34

2 1 17 30 31 33 25 26 28 23 46 40

3 3 33 35 30 27 30 35 21 37 22 27

4 3 21 34 30 38 26 20 32 30 35 31

5 1 31 31 25 28 24 43 34 33 24 26

6 4 33 36 28 36 34 24 29 32 18 26

7 4 23 35 32 34 25 23 34 40 27 23

8 1 28 27 32 28 32 35 23 28 37 29

9 2 27 30 38 23 36 25 26 28 26 39

10 2 27 28 30 35 42 32 25 28 27 24

11 9 51 38 69 54 61 66 60 53 69 70

12 4 24 20 35 28 34 40 25 27 30 33

13 4 38 52 67 51 66 68 65 72 55 62

14 34 233 220 234 228 269 240 238 219 252 233

15 64 479 517 525 508 507 458 545 596 568 633
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Table 4: Results of the Observed Proportion of Passing (OPOP) under test module-3

Test No. Tvalue

Observed Proportion of Passing (OPOP)

RC4 PM BBS-1L BBS-4L

1 0.97277 0.98000 Y 0.99333 Y 0.98667 Y 0.98333 Y

2 0.97277 0.99667 Y 0.99667 Y 0.99667 Y 0.99667 Y

3 0.97277 0.98000 Y 0.99667 Y 0.99333 Y 0.99000 Y

4 0.97277 0.99667 Y 0.98333 Y 0.97333 Y 0.99000 Y

5 0.97277 0.99000 Y 0.99000 Y 0.99333 Y 0.99667 Y

6 0.97277 0.98667 Y 0.98000 Y 0.99667 Y 0.98667 Y

7 0.97277 0.98667 Y 0.99000 Y 0.99333 Y 0.98667 Y

8 0.97277 0.98667 Y 0.98000 Y 0.98667 Y 0.99667 Y

9 0.97277 0.99333 Y 0.98000 Y 0.98000 Y 0.99333 Y

10 0.97277 0.98667 Y 0.99333 Y 0.99667 Y 0.99333 Y

11 0.97781 0.99167 Y 0.98833 Y 0.99333 Y 0.98500 Y

12 0.97277 0.99000 Y 0.99000 Y 0.99333 Y 0.98667 Y

13 0.97781 0.98833 Y 0.98833 Y 0.98000 Y 0.99333 Y

14 0.98391 0.98797 Y 0.98250 N 0.98583 Y 0.98583 Y

15 0.98594 0.98667 Y 0.98278 N 0.98796 Y 0.98815 Y

Table 5: Results of the P-value of P-values (POP) under test module-3

Test No.
P-value of P-values (POP)

RC4 PM BBS-1L BBS-4L

1 6.71779e-1 Y 4.56746e-2 Y 1.50907e-1 Y 2.40914e-1 Y

2 9.19967e-1 Y 9.78072e-1 Y 8.04337e-1 Y 1.71071e-2 Y

3 3.66918e-1 Y 6.02458e-1 Y 3.72502e-1 Y 3.55909e-1 Y

4 4.01199e-1 Y 3.78138e-1 Y 3.72502e-1 Y 4.62245e-1 Y

5 7.59756e-1 Y 9.79974e-1 Y 3.29332e-1 Y 3.09056e-1 Y

6 2.20931e-1 Y 5.34146e-1 Y 1.53763e-1 Y 2.49284e-1 Y

7 8.93001e-1 Y 3.95358e-1 Y 9.73936e-1 Y 3.45115e-1 Y

8 6.85579e-1 Y 7.06149e-1 Y 4.13032e-1 Y 8.34308e-1 Y

9 4.25059e-1 Y 8.21774e-2 Y 4.49672e-1 Y 3.72502e-1 Y

10 4.55937e-1 Y 3.39799e-1 Y 9.11413e-1 Y 4.94392e-1 Y

11 6.82134e-1 Y 5.08454e-2 Y 1.91356e-4 Y 1.06666e-1 Y

12 9.52778e-1 Y 5.77531e-2 Y 1.96313e-2 Y 3.72502e-1 Y

13 4.65415e-1 Y 1.50907e-1 Y 8.38668e-2 Y 1.37282e-1 Y

14 2.52479e-1 Y 1.58847e-4 Y 1.01765e-1 Y 2.35792e-1 Y

15 2.20502e-1 Y 1.23649e-1 Y 1.15477e-2 Y 4.79661e-6 N
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